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RNA-directed DNA methylation (RADM) is a plant-specific de novo
methylation pathway that is responsible for maintenance of asymmetric
methylation (CHH, H = A, T or G) in euchromatin. Loci with CHH
methylation produce 24 nucleotide (nt) short interfering (si) RNAs. These
siRNAs direct additional CHH methylation to the locus, maintaining
methylation states through DNA replication. To understand the necessary
conditions to produce stable methylation, we developed a stochastic
mathematical model of RADM. The model describes DNA target search
by siRNAs derived from CHH methylated loci bound by an Argonaute.
Methylation reinforcement occurs either throughout the cell cycle (steady)
or immediately following replication (bursty). We compare initial and final
methylation distributions to determine simulation conditions that produce
stable methylation. We apply this method to the low CHH methylation
case. The resulting model predicts that siRNA production must be
linearly proportional to methylation levels, that bursty reinforcement is
more stable and that slightly higher levels of siRNA production are
required for searching DNA, compared to RNA. Unlike CG methylation,
which typically exhibits bi-modality with loci having either 100% or 0%
methylation, CHH methylation exists across a range. Our model predicts
that careful tuning of the negative feedback in the system is required to
enable stable maintenance.

1. Introduction

In eukaryotic genomes, cytosines are methylated to influence the behaviour
of DNA, and loss of this methylation has profound effects on gene expres-
sion and genome stability [1,2]. DNA methylation in animals is primarily
on cytosines that are immediately 5 to a guanine (a ‘CG’ site), whereas
DNA methylation in plants occurs on cytosines regardless of the surround-
ing sequence context. Distinct mechanisms maintain CG, CHG and CHH
methylation (where H= A, T or C) in plant genomes. Most DNA methyla-
tion occurs in large blocks of heterochromatin, the highly condensed and
gene-poor regions of the genome. This methylation persists following DNA
replication because the signals recruiting methyltransferases are encoded in
histone modifications, which are equally partitioned to the two daughter
strands. The 50% reduction in modified histones is sufficient to restore DNA
methylation levels before the next round of DNA replication. In contrast,
CHH methylation in euchromatin, the portion of the genome containing
most protein-coding genes, is maintained by RNA-directed DNA methylation
(RdDM) [3].

RdDM employs a complex mechanism whereby 24 nucleotide (nt) small
interfering (si) RNAs are synthesized from methylated loci, processed and
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bound by Argonaute (AGO) proteins in the cytoplasm and reimported to the nucleus before targeting DNA methylation based [ 2 |

on the sequence information encoded by the siRNA [4,5]. Binding of the AGO:siRNA complex to a target locus recruits a
de novo methyltransferase to place additional CHH methylation. Many of the components necessary for RdADM have been
identified via forward or reverse genetic screens and biochemical characterization of these components has led to a complex
schematic model of this mechanism. RADM begins when RNA Pol IV produces short non-coding transcripts [6,7]. Pol IV then
backtracks along DNA, releasing the 3’ end of the transcript and passing this to RNA-dependent RNA polymerase 2, which uses
it as a template for synthesis of a complementary strand [8]. The short double-stranded RNAs produced by these polymerases
are substrates for Dicer-like 3, which trims them to produce 24 nt siRNA duplexes [9,10]. These siRNA duplexes are exported
to the cytoplasm, possibly via TREX/THO complex [11], where they are bound by an AGO protein. The 24 nt siRNA produced
in RdADM is bound by AGOs in the AGO4 clade [12] and siRNA binding triggers nuclear localization of AGO4:siRNA
complexes [13]. In the nucleus, the AGO :siRNA complex uses the sequence of its siRNA to identify complementary nucleic
acids—probably non-coding transcripts produced by RNA Pol V, or potentially single-stranded DNA liberated during Pol V
transcription [14-17]. Localization of the AGO:siRNA complex at chromatin recruits domains rearranged methyltransferase
(DRM), which methylates cytosines regardless of their sequence context [18-21]. The DNA methylation triggered by DRM
causes methylation of histone H3 lysine 9 (H3K9me), a mark that recruits Pol IV for further siRNA production [20,22,23]. DRM
has preference for double-stranded DNA, but preferentially methylates only one of the two strands [19]. However, bidirectional
siRNA production and Pol V transcription result in methylation of both DNA strands at a target locus [24]. DNA methylation
is therefore distributed to both daughter strands following DNA replication; similarly, methylated histones are randomly
distributed to daughter strands, resulting in a strong feedback loop to maintain DNA methylation through cell divisions [20,25].

Despite this detailed molecular model, there are a number of unanswered questions regarding the mechanism of RADM.
For example, although non-coding RNA produced by Pol V is generally assumed to be the target of AGO :siRNA complexes,
zero-distance cross-linking localizes AGO4 to the DNA, suggesting that AGO :siRNA complexes directly bind to DNA [16].
The carboxy terminal domain of RNA Pol V also contains numerous AGO hook motifs, which bind AGO proteins in a
sequence-independent manner [26]; these motifs are required for RADM, but sequence-independent binding is not part of the
canonical model. In addition to unanswered questions regarding the mechanism, we also have no quantitative understanding
of RADM and the parameters that enable maintenance of methylation and siRNA production through many cell divisions. It
is particularly notable that sites of RADM differ in both the amount of siRNA produced and level of methylation, yet these
different levels are consistent between individuals, indicating a system that is stable at a range of parameter values [27-29]. The
median levels of RADM methylation vary greatly, often around 20% methylation, and occasionally as low as 8% [30].

In addition to diagrammatic models that describe the simple relationship between components, biological processes can
also be described by mathematical models that incorporate dynamic and quantitative interactions between the components.
Mathematical models allow researchers to determine the quantitative parameters of the biological process and also to test
the characteristics of the system and discover new relationships or components [31]. De novo and maintenance DNA methyla-
tion have been modelled using stochastic models and coupled rate equations [32-40]. However, these models focus on CG
methylation, whose maintenance is fundamentally different from RdDM maintenance of CHH methylation. After semi-conser-
vative DNA replication, CG sites become hemi-methylated and hemi-methylated sites are directly recognized by DNMT1-type
methyltransferases. In contrast, at CHH sites, one duplex remains methylated, while the other is unmethylated until acted upon
by RdADM [3]. Mathematical modelling has also been applied to RNA silencing mechanisms [41-43]; however, these models
have been limited to post-transcriptional silencing of mRNA transcripts in the cytoplasm, rather than small RNA-mediated
modification of DNA or chromatin.

Here, we produce the first quantitative mathematical model for RADM, and we investigate the parameter values necessary
to produce stable methylation across multiple cell divisions. We focus on the necessary conditions to produce a stable system
under the low methylation case, where the median CHH methylation is only 8%. We demonstrate that the relationship
between methylation and siRNA production is linear and that RADM is likely limited to a discrete portion of the cell cycle for
intermediate methylation states to exist. We also demonstrate that both AGO4-RNA and AGO4-DNA associations are feasible
in our model.

2. Methods
2.1. Model development

The RADM maintenance model was developed in Matlab 2021a (2021, MATLAB v. 5.32.0 (R2021a); The MathWorks Inc.,
Natick, MA: https://www.mathworks.com), as described in the electronic supplementary material. Briefly, 1000 unique loci were
modelled and randomly assigned CHH methylation level drawn from the distribution —log(1 - (1 —exp( - u)) * U/u), where u
is the mean methylation fraction and U is uniformly distributed noise, 1-0.9 % Unif(0, 1). This distribution was chosen as it
can take a variety of forms (left or right skewed, symmetric and uniformly distributed). We do not consider variation between
initial conditions to be significant due to the high sample size (1000). A pool of siRNAs is generated from the loci based on
the methylation present at the locus; because the loci are unique, each siRNA matches only a single locus. SIRNAs compete for
association with a limited number of AGO proteins, and these AGO :siRNA complexes then search for appropriate loci. If an
AGO :siRNA complex interacts with a non-matching locus, it will slide along the locus or disassociate and potentially interact
with a new locus.

Movement of siRNA : AGO complexes between loci was modelled based on established parameters describing facilitated
diffusion across RNA or DNA strands, such as short-distance diffusion (i.e. sliding, hopping), longer jumps and strand transfer,
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Table 1. Model parameters and sources. The complete siRNA sequence consists of the seed sequence with 3" and 5’ supplementary sequences.

parameter value value in model source
AGO : siRNA affinity 107 nM (AGO2 : mRNA) ignored; recycling of AGO : SiRNA pool done through [48-52]
replication events

107 nM (AGO2 : miRNA)

typically 0.8 AGO : 1 siRNA; not significant influence [53]
(confounded with siRNA production level)

coupled to SiRNA abundance [53,54]
AGOQ i limited in proportion to siRNA abundance [54]
ignored; recycling of AGO : siRNA pool done through [52]
replication events

AGO : siRNA affinity to RNA strand kon:3.9x 10°nMs™ koff: 0.02 (less than seed + 3" supplementary) [44,52,55]
Kofr: 0.0036 (<ph)
10 pm to 10 nM (RISC)

Kofris 0.03 for DNA (near detection limit but higher than

RNA)
AGOsearchngNArateSO%tomoveIeftornght .............................................. P nght ............................................. [4447] .............
kon 3.9 % 10%/Ms shuttling every 1 (calculated: 3 X faster than DNA)
AGOsearchlngDNArateSO%L/R ................................................................... ; O%L/R ................................................................. [4447] .............
1% 10°/Ms kg shuttling every 0.3 s (calculated: 3 x slower than RNA)
AGO SeaKhmg]umpmg .............................................. 1 0% ........................................................................ 10%stochast| ccomfl |p ................................................ [47] .................
RNAoﬁtargetsSO% ........................................................................ 5 0%chanceofatranscnpt(omlngfromans|RNAproduclng .........................
locus
DNAofftargets90% ........................................................................ 9 0%ofDNAdoesnotproduceisNAs ....................................................
i t|meto pmd uce 1%|n(rease|n(HH methylan on ...................................................................................... . y o ng R total G

pb: photobleaching limit when determined by FRET.

and dissociation from the locus (exit) [44—47] (table 1; electronic supplementary material, text 1). If an AGO :siRNA complex
associates with its matching locus, the time-to-disassociation is determined by the RNA-RNA or RNA-DNA dissociation
constant (kp). The total “dwell time” (sum of duration of association of all matching AGO : siRNA complexes) at a given locus
determines the amount of methylation placed during the cell cycle. The level of methylation decreases by half at the start of
each cell cycle due to new DNA synthesis. Similarly, the AGO : siRNA population is randomly reduced by half and new siRNAs
are synthesized. A description of the model algorithm is provided as electronic supplementary material, text 1.

2.2. Model simulation workflow

The model was run across a range of parameters, including the siRNA production level (50-700 times methylation fraction);
the methylation saturation point for siRNA production; steady or bursty siRNA production; for different relationships between
siRNA production and methylation level (linear, sigmoid, Hill function); and for AGO:siRNA binding to RNA or DNA
targets. With a linear relationship, we calculate the number of siRNA produced as methylation level multiplied by the siRNA
production level, such that for 10% methylation and an siRNA production level of 100, 10 siRNAs are produced from that locus.
When modelling a linear relationship with a saturation point, we take the minimum result of either the linear relationship or
the saturation point multiplied by the siRNA production level. For the Hill function relationship, we calculated the number

methylation_fraction’

* 10. For the sigmoidal Hill function relationship, we used the following

of siRNAs produced using = =

+ methylation_fraction
. methylation_fraction

" 6+methylation_fraction
drawn from the same starting methylation distribution. Each simulation condition had seven simulation replicates with 1000
randomly drawn methylation fractions. During the first burn-in generation, the dwell time (sum of duration of association of
all matching AGO : siRNA complexes) required to increase methylation by 1% was established based on the average dwell time
across all loci, assuming that the average dwell time was sufficient to achieve CHH methylation maintenance. For example, as

form

*11.1. Each simulation was run for 10 generations with initial loci CHH methylation levels

the median methylation was 8% prior to replication, the average dwell time at loci beginning at 8% methylation was sufficient to
increase methylation by 4%, resulting in stable maintenance.
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Table 2. Summary of simulation results. Number of simulations (out of seven) that are insignificantly different from the starting distribution after 10 cycles. Conditions [ 4|

where the majority of simulations are insignificantly different are bolded.

bursty reinforcement steady reinforcement

RNA  RNA production level 100 200 300 400 500 600 700 50 100 200 300

10 0 0 0 0 0 0 0
..... S0y
S . ;o ;o s o o S
w o . . S o
SV ;o . S S

2.3. Assessment of solutions

To assess the stability of these simulations, the methylation distribution at the final (tenth) generation was compared to the first
generation. Differences between starting and ending methylation distribution across simulated loci were compared using the
non-parametric Kolmogorov—-Smirnov test (kstest) in Matlab with a significance threshold of p <0.01. The ‘success’ condition
for maintenance of methylation is then p >0.01, indicating the final methylation distribution is not significantly different from
the starting distribution. Due to the stochastic nature of these simulations, simulation replicates might vary in whether they
are scored as non-significantly different, and therefore stable. Simulation conditions that had more non-significantly different
final distributions out of seven simulation replicates were considered more stable. Since the DNA-binding condition requires
approximately 3 times longer to run than RNA binding, only a reasonable fraction of RNA conditions was sampled (table 2).

3. Results

3.1. A quantitative model for maintenance of DNA methylation via RdADM

Numerous components of RADM have been identified, and the basic mechanism is well understood [4,5]. When constructing
our model, we therefore simplified the process to the most critical components, namely siRNA production, siRNA : AGO
association with target molecules, induction of methylation and DNA replication (figure 1).

While 24 nt siRNAs engaged in RdADM are the most abundant class of small RNAs in most plant tissues, the number of
siRNAs produced from a given locus per cell is unknown. Similarly, it is not clear whether all siRNAs are bound by AGO4,
although there is some evidence to suggest this. AGO4 protein does not accumulate in the absence of siRNAs [12], suggesting
that siRNAs might be limiting in vivo. However, exogenous siRNAs delivered to mammalian cell culture compete for AGO
binding [53], indicating that AGO levels can be limiting in some circumstances. Limiting AGO would primarily influence the
ability of loci with low CHH methylation levels to be represented in the AGO :siRNA pool. In preliminary work, we found
that the influence of limiting AGO association was easily confounded by changing siRNA production levels, suggesting that the
ratio of AGO :siRNA complexes to target molecules is a more important parameter than stochasticity derived from competition
between siRNAs for AGO binding. In the simulations presented here, we slightly limit AGO levels (0.8 AGO to 1 siRNA), and
compare model behaviour across a range of siRNA production levels (table 2).

3.2. Bursts of siRNA production across the cell cycle is favoured over constant production

One outstanding question regarding RdADM is when, during the cell cycle, siRNA production and DNA methylation occur.
In fission yeast, small RNA-directed chromatin modification occurs immediately following DNA synthesis, perhaps because
newly synthesized histones lack heterochromatic modifications and therefore are relatively permissive for Pol II transcription
[56,57]. However, RADM is initiated by RNA Pol IV transcription, which is enhanced, rather than repressed, by silent heter-
ochromatin marks [22,58]. To explore the kinetics of siRNA production during the cell cycle, we compared two potential
scenarios: ‘bursty’ production, where siRNAs are added to the siRNA pool based on a locus’” methylation level in a single
burst immediately after replication, and steady production, which was modelled by siRNA production at six timepoints spread

6SL0VC ‘L joiguadp  qosi/jeunol/bio SU|uS||qnd/(19|)05|e/(01



Downloaded from https://royal societypublishing.org/ on 17 December 2024

. ’ + Z 1% methylation
‘ Unmethylated 1901 * Match dwell time
Methylated loci R L.
1: When is methylation increased?
DNA  RNA

* Bursty reinforcement

1000 methylated loci « Steady reinforcement

methylation level

[\methylation

siRNA
production

Q Jrgetting

Every 0.3s DNA, 1s RNA:
1: Jump 10% chance

1: Relationship
2: % saturation: =

5-50% CHH methylation «<@®—_ 2:Slide 50% chance L, R
3: Magnitude: 100-700
o0 }‘rm
B e sl 2l »~ " 3:Bind/unbind RNA 0.02 k,

4: AGO binding: 80% chance =2 DNA 0.03 k¢
Figure 1. Schematic of CHH model system. Maintenance of DNA methylation by siRNAs is a self-reinforcing loop. SiRNAs are produced by RNA Pol IV and RDR2 (grey
heptagon); these siRNAs integrate into AGO proteins (grey oval) and use the sequence of the siRNA to bind target DNA; successful association of the AGO : siRNA with
a DNA locus recruits a DNA methyltransferase (grey star) to induce methylation, which causes additional siRNA production. Higher methylation causes greater siRNA
production and subsequently more DNA methylation (left), but the process is also stable at lower methylation levels (right). Boxes illustrate the parameters used to
model different parts of the system, with purple text indicating values explored in our simulations, blue text indicating fixed values and red text indicating fixed values
obtained from the literature (see table 1).

over the course of the cell cycle (e.g. every 4 hours). In both scenarios, we assume CHH methylation is continuously updated
throughout the cell cycle. We compared the performance of these two scenarios across a range of siRNA production levels (100,
200, 300), using a simple linear relationship between methylation level and siRNA production.

After simulating for 10 cycles, we quantified stability by a statistical comparison of the starting methylation distribution
and the methylation distribution after the tenth cell cycle. Variation of individual loci might reflect true cell-to-cell variation in
methylation that is averaged when a tissue is measured. We therefore focused on whether the final methylation distribution was
centred around zero (no change). Each stochastic simulation was simulated seven times. We found that the bursty reinforcement
scenario resulted in stable methylation distributions, particularly at higher siRNA production levels. The steady reinforcement
scenario performed better at lower siRNA production levels but remained inferior to bursty (figure 2, table 2). Final methylation
distributions under steady reinforcement demonstrate that some loci become hypermethylated as a consequence of the positive
feedback between siRNA production and DNA methylation. We therefore conclude that siRNA production might be limited to
a single point within the cell cycle, although this need not be immediately following DNA synthesis, as modelled here.

3.3. Linear relationships between CHH methylation and siRNA production stabilize RADM loci with low methylation

Another unanswered question regarding RADM is the quantitative relationship between DNA methylation and siRNA
production. DNA methylation triggers methylation of Histone H3 on Lysine 9 (H3K9me), which in turn recruits siRNA
production machinery [22,58,59]. This connection suggests an underlying increasing relationship between siRNA production
and CHH methylation. Here, we consider four models: a linear relationship; a linear relationship with a maximum siRNA
production, or saturation point, that occurs at a level of methylation (here, we modelled saturation at 5, 10, 15 or 50%
methylation); a Hill function relationship; and a logarithmic relationship (electronic supplementary material, figure S1). We
ran the model with each of these relationships across a range of siRNA production levels with both bursty and steady siRNA
production and quantified the stability of the methylation distribution (figure 3; electronic supplementary material, figure 52).

We found that regardless of bursty or steady methylation reinforcement, a linear relationship between siRNA production
and CHH methylation performed the best, with saturation at 15% or higher CHH methylation (figure 3). Note that median
CHH methylation is at 8% methylation in our simulations, with 94.8% of loci being <15% CHH methylated and 84.4% being
<10% CHH methylated. Hill function and logarithmic relationships failed to maintain the initial CHH methylation distribution
due to their low coverage of loci with low methylation (electronic supplementary material, igures S1 and S2).

We also explored high siRNA production levels (500-700) with bursty reinforcement, where siRNA production saturates
at 15% CHH methylation (electronic supplementary material, figure S3). We found that increasing the siRNA production
level under these simulation conditions resulted in stable CHH methylation. Similarly, in models of post-transcriptional RNA
silencing, high degrees of stimulus produce more stable behaviour [41].
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Figure 2. Bursty siRNA production results in enhanced stability of CHH methylation distribution. Varying levels of siRNA production were simulated across 10 rounds
of DNA replication over seven simulation replicates (all linearly proportional to methylation level) for bursty and steady conditions. Final methylation is plotted versus
initial methylation for each locus in a representative simulation (left) and the distribution of methylation change is reported for all seven simulation replicates (right,
shaded replicates overlap each other). In bursty conditions, final methylation approximates initial methylation, and changes in methylation are centred at zero. In
contrast, steady reinforcement of methylation results in increased methylation relative to the starting distribution. In all cases, higher levels of siRNA production
reduced the variance in CHH methylation. The dashed line represents 1:1 correspondence.

Although RdDM is primarily associated with CHH methylation, there is extensive crosstalk between methyltransferases in
plants [60], and the siRNA production machinery might respond to other forms of methylation (i.e. CG or CHG). We therefore
ran the model with the addition of RADM-independent CG methylation. A level of CG methylation was randomly assigned
from a uniform distribution between 0 and 20% methylation and siRNA production was set to be linearly proportional to
the total CHH and CG methylation at each locus. The addition of CG methylation resulted in unrealistic CHH methylation
distributions that mimic the uniform (0.20%) distribution of CG methylation regardless of RNA production level (see electronic
supplementary material, figure S4). From these simulations, we conclude that the most stable methylation patterns result from
siRNA production that is linearly related to the amount of CHH methylation at a locus, and is not meaningfully influenced by
the amount of CG methylation.

3.4. Stable methylation is possible with both RNA and DNA target sites

Although most models propose that siRNA: AGO4 complexes associate with non-coding RNA produced by RNA Pol V
[14,15,17], it remains possible that these complexes bind to single-stranded DNA denatured by Pol V transcription [16].
Studies of related AGO proteins demonstrate that AGO : siRNA complexes have high affinity for both DNA and RNA strands
[44,52,55]. We therefore modified appropriate parameters in the model to test the feasibility of DNA as the AGO : siRNA target
and measure systemic differences between DNA and RNA target molecules (table 1). The ko, of AGO to RNA is about 3 times
slower than the ko, for DNA [44,52,55]. We therefore used different time steps when testing AGO : siRNA searching for RNA
or DNA targets—every 1 s for RNA and every 0.3 s for DNA [44,47]. The ko¢ was also smaller for RNA than DNA, resulting
in shorter dwell times for AGO :siRNA complexes associated with their target DNA site versus a target RNA site. Finally, to
account for the greater number of non-RdDM DNA sites in a nucleus, siRNA : AGO complexes were allowed only a 10% chance
of encountering one of the RdDM loci in the DNA target scenario, compared to a 50% chance in the RNA target scenario. As the
DNA target search simulations take 3 times as long to complete, we limited simulations to those conditions that were observed
to be successful or near-successful in RNA binding simulations.

When the model was run with the siRNA : AGO complex binding DNA, we observed that the steady siRNA production
condition never produced stable CHH methylation distributions (figure 4). The bursty siRNA production condition maintained
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Figure 3. A linear relationship between CHH methylation and siRNA production with a high saturation point is optimal for stable maintenance of CHH methylation.
Bursty versus steady reinforcement of methylation was tested with varying levels of saturation (all at RNA factor 300). The saturation level reflects the percentage of
CHH methylation at which there is no corresponding increase in siRNA production (i.e. for saturating 10%, CHH methylation levels of 10% or greater will produce the
same number of siRNA). Final methylation is plotted versus initial methylation for each locus in a representative simulation (left) and the distribution of methylation
change is reported for all seven simulations (right, shaded replicates overlap each other). In both bursty and steady conditions, saturation results in a plateau of
final methylation; however, bursty reinforcement with a 15% or greater saturation level produces stable maintenance of CHH methylation across 10 rounds of DNA
replication and seven simulation replicates. Results based on nonlinear relationships are in electronic supplementary material, figure S2.

CHH methylation, but required a higher siRNA saturation level in comparison to RNA simulation conditions. At higher siRNA
production levels (400-500), we found bursty siRNA production resulted in stable CHH methylation distributions at a high rate,
similar for both RNA and DNA search conditions. These observations suggest that AGO : siRNA targeting of DNA remains a
possible mechanism of RdADM and would require higher levels of siRNA production.

3.5. Increasing the level of siRNA production eventually leads to self-inhibition

Although there are clear positive feedbacks in this system, we wondered what prevents the levels of CHH methylation from
fully saturating, as in the CG methylation case. We therefore checked the model simulations for predictions of negative feedback
in our simulations with bursty reinforcement, with a linear relationship between CHH methylation and siRNA production,
which saturates at 15% CHH methylation (seven replicates for each siRNA production level). Across these model simulations,
as siRNA production increases, the number of AGO :siRNA complexes increases proportionally (figure 5), and the number of
loci that lose CHH methylation (CHH methylation reduces to 0%) drops exponentially.

However, the model predicts that increasing siRNA production levels also increases the amount of time to increase CHH
methylation by 1%. The amount of dwell time (duration of an AGO:siRNA complex interacting with its matched locus)
required to increase CHH methylation by 1% is internally calculated during the first round of every model simulation, as all
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Figure 4. Similar features produce stable CHH methylation maintenance whether AGO searches RNA or DNA. Methylation can be stably maintained to bursty siRNA
production at two saturation levels when the model is run with either searching RNA or DNA targets. Final methylation is plotted versus initial methylation for each
locus in a representative simulation (left) and the distribution of methylation change is reported for all seven simulations (right, shaded replicates overlap each other).
See table 2 for additional conditions.
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Figure 5. Increasing siRNA production beyond a point leads to self-inhibition. As the level of SiRNA production increases, the number of AGO : SiRNA complexes
increases linearly (a), and the number of loci that lose CHH methylation drops exponentially (b). However, increasing the size of the AGO : siRNA complex pool increases
within-complex competition for loci. As the siRNA production level increases, the amount of dwell time (matched AGO : siRNA and loci) to increase CHH methylation by
1% increases linearly (c), and the mean number of times that a methylated locus experiences maximum occupancy increases exponentially (). In our model, a locus
can hold up to 10 AGO : siRNA complexes. Shown is the value of each of seven simulation replicates for each siRNA production level.

model parameters influence how long this takes. To calculate this, we assume that the amount of dwell time a locus experiences
is sufficient for the median locus to double its CHH methylation fraction (i.e. the amount lost due to DNA replication).

The model also predicts that increasing siRNA production exponentially increases the number of times a methylated locus
hits maximum occupancy (10 AGO : siRNA complexes). As we hold the number of CHH methylated loci (1000) constant across
all simulations, as the number of AGO:siRNA present in the system increases, eventually there will be more AGO :siRNA
available for a given locus than there are areas to interact with that locus.
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Figure 6. Stable maintenance of a range of CHH methylation fractions requires a balance of negative feedback with methylation reinforcement. CHH methylation
reinforcement produces a strong positive feedback loop, where increasing CHH methylation at a locus increases siRNA production from that locus, and so on. DNA
replication provides strong negative feedback on the CHH methylation system, reducing both methylation and siRNA by half. Our modelling results predict that stable
maintenance of CHH methylation is enabled by bursty reinforcement, which limits the strength of that positive feedback loop, as well as internal competition between
AGO : siRNA complexes for their matched loci.

methylation

4. Discussion

Here, we describe the development of the first mathematical model describing maintenance of CHH methylation by RdADM.
We validated the model’s behaviour by simulating over a range of parameters and conditions and determined a set of config-
urations that are able to produce stable maintenance of CHH methylation over a range of starting methylation levels that
approximate empirical observations [61]. Although most experimental evidence suggests that CHH methylation due to RADM
is commonly around 20% [30], in this paper we focused on the case of low CHH methylation, with a median of 8%, to determine
the conditions required to maintain such an extreme.

Several known features of the CHH methylation system were excluded from our current model for simplicity. For example,
we considered siRNA to have locus specificity but not sublocus site specificity. In reality, an AGO :siRNA complex would
only match a specific site within a locus and might need to slide along the target locus before binding. We also modelled all
loci as unique, when many RdDM loci in a genome share homology and siRNAs produced at one locus might be functional
at multiple sites. Homologous sites could introduce competition between loci, which might reduce stability of methylation;
alternatively, siRNA production at a homologous locus could restore methylation levels that had been lost and thereby buffer
the system. Similarly, our model was completely cell autonomous, whereas siRNAs are known to move intercellularly and
function non-cell autonomously [62]. Intercellular movement of siRNAs (or siRNA : AGO complexes) also offers the possibility
of both competition and mutual support between CHH methylated loci. Most importantly, we assumed that all AGO :siRNA
complexes disassociate during DNA replication and must randomly rediscover their target loci. Nothing is known regarding
the fate of RNA Pol V or its transcripts during DNA replication, and it remains possible that AGO : siRNA complexes might be
preserved at their target locus in some manner, perhaps in association with the Pol V carboxy terminal domain. Despite these
simplifications, the model provides insight into the quantitative features required for stable maintenance of CHH methylation
by RADM.

Firstly, we find that bursts of siRNA production, wherein the pool of siRNA is filled right after replication, results in more
stable CHH methylation distributions under a range of simulation conditions compared to steady reinforcement, where siRNAs
are produced throughout the cell cycle. Bursty siRNA reinforcement has been observed at the transcriptionally silent pericentro-
meric repeats in fission yeast and might explain the paradox of Pol II transcription being required to establish transcriptionally
silent chromatin [56,57]. Because DNA synthesis reduces H3K9me, fission yeast pericentromeres become permissive for Pol
II transcription allowing the production of siRNAs to reestablish H3K9me. However, such a compensatory dynamic is not
expected at RADM loci in plants, because DNA methylation and H3K9me promote siRNA production rather than inhibit it.
A mechanism restricting siRNA production to a single point of the cell cycle is unknown but might involve other histone
modification or the density of linker histone [23], or direct regulation by cell cycle machinery [63]. Regardless of the mechanism,
bursts of siRNA production would answer at least one outstanding question: How is transcription of the same locus by RNA
Pol IV and Pol V coordinated? It might be that the functions of these polymerases are temporarily separated during the cell
cycle. DMS3, which is required for Pol V recruitment to chromatin, is post-transcriptionally regulated, and its levels fluctuate
across the cell cycle [63]. A contrasting fluctuation of Pol IV activity would allow these polymerases to alternate recruitment at
RdDM sites.

Secondly, our simulation results strongly support a linear relationship between siRNA production and CHH methylation, as
alternative biologically relevant relationships (Hill function and sigmoid function) resulted in loss of methylation distribution.
Under a linear relationship, saturation of siRNA production at 15% CHH methylation or higher was also sufficient to maintain
CHH methylation. However, very few of the loci in our model existed at methylation levels above this saturation point,
and it is not clear whether higher methylation can be maintained under saturation. The simulations also suggest that the
number of siRNA produced per percent CHH methylation needs to be sufficiently high to achieve stable maintenance of CHH
methylation.
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Although our results favour the linear relationship over the nonlinear relationships explored, it is unclear what biological
mechanisms might produce linearity. Due to the computation time required to run detailed simulations, we do not explore
every possible relationship between methylation and siRNA production. We interpret our results as not supporting a linear
relationship per se, but rather a relationship sufficiently linear to satisfy the requirements of this system. For example, our results
suggest that it is critical to have siRNA coverage of those loci with low levels of CHH methylation, while higher degrees of
CHH methylation can be maintained with relatively lower representation in the siRNA pool. Lower production of siRNA for
loci with high degrees of CHH methylation would reduce competition for the locus, and for AGO generally, by reducing the
total siRNA pool size.

Finally, stable maintenance of CHH methylation was possible whether the model was set for AGO : siRNA searching of RNA
or DNA. Although all characterized AGO : sSRNA systems are demonstrated or presumed to target RNA, including those that
cause transcriptional silencing of chromatin [17,64,65], there is also evidence for AGO4-DNA association during RdADM [16].
Our model demonstrates that targeting DNA by AGO : siRNA complexes is feasible and also that the viable parameter space for
these two targets overlaps, offering the possibility that cells might enable targeting of DNA and RNA simultaneously.

CHH methylated loci have the apparent ability to stably maintain a wide range of methylation fractions, while CG methyla-
ted loci tend towards bi-modality, exhibiting saturation or depletion of CG methylation. There is a strong positive feedback
loop in the CHH methylation reinforcement pathway, where more AGO : siRNA dwell time increases CHH methylation levels,
which produce additional siRNA, enabling more AGO : siRNA complexes, and so on. The model predicts that careful tuning is
needed in the negative feedback present in this system to stably maintain a range of CHH methylation fractions (figure 6). First,
DNA replication is a strong negative feedback, reducing both CHH methylation fractions and the AGO : siRNA complex pool
by half. Second, bursty reinforcement rather than steady reinforcement limits the degree to which the system can accumulate
siRNA and consequently CHH methylation by limiting the strength of that positive feedback. The model also predicts that
over-production of siRNA leads to self-inhibition, particularly as the number of AGO : siRNA complexes surpasses the capacity
of their matched methylated locus.

Epigenetic pathways like RADM are inherently difficult to understand due to the nature of their self-reinforcing states—once
one aspect is disrupted, the entire system collapses. For many years, geneticists have used this fact to identify components
of RADM and biochemists have then investigated the physical interactions and enzymatic activities of these components in
isolation. Our mathematical model demonstrates the insight to be gained by applying quantitative modelling to epigenetic
systems. We hope it will serve as a launching point for additional research in this area.
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